C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name : Geotechnical Engineering-I

	Subject Code :4TE05GTE1			Branch : B.Tech (Civil)	Branch : B.Tech (Civil)	
	Semeste	r : 5	Date :28/03/2017	Time :02:30 To 05:30	Marks :70	
	(1) (2) (3)	ons: Use of H Instructi Draw ne	Programmable calculator of ions written on main answeat diagrams and figures (& any other electronic instrument is ver book are strictly to be obeyed. (if necessary) at right places.	prohibited.	
	(4)	Assume	suitable data if needed.			_
Q-1	e)	Attem	pt the following question	ns:		(14)
	a)	(i) Deg Soil (v	gree of saturation (ii) Con Compression Index	npaction (iii) Optimum moisture cor	ntent (iv) Residual	5
	b)	Give t	he soil size of classification	on as per IS: 1498-1970.		1
	c)	Worko OMC	but theoretical Maximum $= 16\%$.	dry density for a soil sample having	sp.gravity 2.7 and	1
	d)	A San poured Soil.	npler with a volume of 5 l into a graduated cylinde	50 cm^3 is filled with a soil sample er, it displaces 25 cm ³ of water. Fin	. When the soil is ad the void ratio of	1
	e)	Find th	ne Porosity of soil for the	same data in Q-1(d).		1
	f)		- <u>-</u> =			1

Fig-1

1

1

Write the Name of shaded Area bounded between A&A₁. In fig 1.

- g) From the Fig-1, Line $B_1B_2 \& C_1C_2$ are known as _____
- h) For the compaction, which type of Roller is ideally suited for cohesive soil?

Page 1 || 2

- Write the type of soil if soil sample is represented by **SM**. What is Sensitivity of soil? i)
- **j**)

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	a)	The in-situ percentage voids of a sand is 34 percent. For determining the density	7
		index, dried sand from the stratum was first filled loosely in a 1000 cm ³ mould and	
		was then vibrated to give a maximum density. The loose dry mass in the mould was	
		1610 g and the dense dry mass at maximum compaction was found to be 1980g.	
		Determine the density index if the specific gravity of the sand particles is 2.67.	
	b)	Describe the phreatic line of earth with Sketch.	7
Q-3		Attempt all questions	(14)
	a)	Define Particle size distribution curve for different types of soils and also write down	8
		the advantages of using semi-log plot for the particle size distribution.	
	b)	Discuss the areas of work of the consulting geotechnical engineer?	6
Q-4		Attempt all questions	(14)
	a)	Explain the Unified Soil classification system in details and also write all prefix &	8
		suffix for different soil.	
	b)	What is time factor? how is it related to the average degree of consolidation?	6
Q-5		Attempt all questions	(14)
	a)	Calculate the co-efficient of permeability of a soil sample, 6 cm in height and 50 cm^2	7
		in cross-sectional area, if a quantity of water equal to 430 ml passed down in 10	
		minutes, under an effective constant head of 40 cm. on oven-drying, the test specimen	
		has mass of 498 g. Taking the specific gravity of soil solids as 2.65, calculate the	
		seepage velocity of water during the test.	
	b)	Explain sand replacement method to find field density of soil.	7
Q-6		Attempt all questions	(14)
	a)	Enumerate the various tests for finding the shear strength of soil and explain any one	8
		test of shear strength with its sketch.	
	b)	A Cohesive Soil yields a maximum dry density of 1.8 g/cc at an OMC of 16 % during	6
		a standard proctor test. If the values of G is 2.65, what is the degree of saturation?	
		What is the maximum dry density it can further compacted to?	
Q-7		Attempt all questions	(14)
-	a)	What are the factors affecting compaction? Discuss in details.	7
	b)	Derive Laplace equation for 2-D flow through soil.	7
Q-8		Attempt all questions	(14)
	a)	Determine effective and neutral stresses at a depth of 15 m below the ground surface	7
		for the following condition: water table 3.0 m below ground surface, G_s = 2.65, e =	
		0.7, average moisture content = 5% .	
	b)	Write short notes on the following structure with neat sketch:	7
		(i) Honeycomb structure (ii) Soil grained skeleton Structure	
		-	

¹ 1